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Abstract 

I n  this paper we present an ezpandable digital archi- 
tecture that provides a n  eflcient real time implemen- 
tation platform for  large neural networks. The archi- 
tecture makes heavy use of the techniques of bit  serial 
stochastic computing to  carry out the large number of 
required parallel synaptic calculations. In  this design 
all real valued quantities are encoded on to  stochas- 
tic bit streams in which the ‘ I ’  density is proportional 
to  the given quantity. The actual digital circuitry is 
simple and highly regular thus allowing very eficient 
space usage of fine grained FPGAs. 

Another feature of the design is that the large num- 
ber of weights required by a neural network are gener- 
ated by circuitry tailored to  each of their specific val- 
ues, thus saving valuable cells. Whenever one of these 
values is  required to  change, the appropriate circuitry 
must be dynamically reconfigured. This may always be 
achieved in a fized and minimum number of cells for 
a given bit stream resolution. 

1 Introduction 

One of the major constraints on hardware imple- 
mentations of neural networks 11, 21, is the amount 
of circuitry required to perform the multiplication of 
each input by its correspsonding weight. This prob- 
lem is especially acute in digital designs, where paral- 
lel multipliers are extremely expensive in terms of cir- 
cuitry. Adopting an equivalent bit serial architecture, 
significantly reduces this complexity, but still tends to 
result in large and complex overall designs. A single 
such multiplier would consume a significant propor- 
tion of a current state of the art  FPGA, thus making 
the use of such devices impractical for this approach. 

This paper describes an alternative neural network 
architecture which may be implemented using stan- 
dard VLSI technology, but also maps extremely effi- 
ciently to dynamically reconfigurable FPGAs [3]. The 
central idea is to represent the real-valued signals 
passing between neurons using stochastic binary se- 
quences. In order to represent a real value of ‘U, in the 
range [-1, 13, we use a stochastic sequence in which the 
probability of each bit being set to one is ( v  + 1)  /2. 
Given two independent bit sequences of this type, rep- 
resenting two real values, the sequence obtained by 
calculating the exclusive-or of the two bit streams will 
represent the product of the two values. This means 
that multiplication of real values may be achieved US- 
ing very simple logic circuitry: a single XOR gate. 

The circuitry used to generate the proposed 
stochastic bit streams is highly pipelined and thus po- 
tentially extremely fast [4]. The individual pipeline 
stages, known as modulators are simple, and the num- 
ber used defines the overall resolution of the generated 
bit stream. The approach taken is to synthesize the 
required stochastic bit stream by appropriately com- 
bining many independent stochastic bit streams with 
a bit probability of one half [6]. These fixed value 
bit streams, referred to as carrier streams, are easy to 
generate using linear feedback shift registers [5, 41, as 
described later. 

The use of stochastic bit streams also enables each 
neuron to calculate a suitable activation function using 
very simple circuitry. In fact, the activation function 
is obtained by using the interaction of the probabil- 
ity distribution of the input bits, and the probability 
distribution of a threshold value, in the following way: 
the weighted input bits to each neuron are summed 
using a simple counter and the final total is compared 
to a preloaded threshold value. The result of this com- 
parison determines the output of the neuron, which is 
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a single bit forming part of a stochastic bit stream 
representing the result of the activation function. 

With this simple circuitry, various different activa- 
tion functions can be obtained depending on the choice 
of the probability distribution for the threshold value. 
For example, a linear activation function may be ob- 
tained by using a uniform probability distribution for 
the threshold value, a sigmoid activation function may 
be obtained by using an impulse-function probability 
distribution for the threshold value. A detailed anal- 
ysis of these results is presented in [7]. 

Another of the problems facing VLSI neural net- 
works is the high degree of connectivity between in- 
dividual neurons. The use of stochastic bit streams 
and time division multiplexing has made it possible to 
design a neuron that behaves as if it has many inputs 
from other neurons, but in fact has only one physi- 
cal connection. For this reason, the physical connec- 
tivity between the neurons in the design we propose 
is very straight forward. This allows the number of 
neurons per device to be very high, as they can be 
efficiently packed in tightly spaced regular structures, 
with a minimum of global wiring. These factors are 
very important when FPGAs are to be used as the 
hardware implementation platform, as both the macro 
cells and the limited amount of global wiring can be 
efficiently allocated. 

As in all applications of stochastic computing, the 
design allows a flexible tradeoff between speed and 
precision because the precision of the output may be 
increased by processing more bits [8] .  The most signif- 
icant aspect of the design, with regard to the overall 
speed of operation, is that it readily allows successive 
layers of a network to be pipelined. This means that 
very large networks may be constructed by cascading 
several single or multi-layer chips, and the throughput 
rate wil l  be independent of the total number of layers. 

The purpose of this paper is to describe the over- 
all architecture of the proposed design and show how 
it may be efficiently mapped to dynamically reconfig- 
urable FPGAs, and thus used to implement standard 
neuron models. A possible learning algorithm for a 
neural network of this type is described in [7]. 

We begin by describing the overall architecture of 
the type of neural network described by this paper, 
and explain the techniques used to allow the individual 
neurons to be fully connected. We then describe the 
detailed operation of an idividual neuron, including a 
detailed explanation of the novel statistical technique 
used to generate an appropriate activation function. 
Finally, we present details of the design for the novel 
circuitry used to generate the large number of real val- 

ued stochastic bit streams, and describe experimental 
results obtained from simulations. 

2 The Overall Network Architecture 

A block diagram of the basic layout of a group of 
neurons on an  FPGA, all sharing the same input, is 
illustrated in Figure 1. Depending on the size of the 
package available, there may be several such groups 
accomodated on a single FPGA. 

Associated with each bit arriving on the shared in- 
put line to each neuron, there is a unique weight bit. 
The stochastic values representing the values of these 
weights are generated either off-chip, or on-chip by 
the circuitry described later in this paper. One bit 
from each of the streams representing the weights is 
distributed to each neuron via the shift register ele- 
ments labelled wn, drawn down the right hand side of 
Figure 1. 
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Figure 1: Layout of a group of neurons within a chip 

Each neuron also has associated with it a section 
of another shift register, that is used to load it with a 
threshold value. The input line to this shift register is 
labelled Ti,, in Figure 1, and the connections between 
successive sections are indicated by the links between 
successive neurons. The threshold values, which are 
represented as normal binary integers, are loaded into 
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this shift register whenever the neuronal thresholds are 
updated. The loading of threshold values is performed 
by the external support circuitry, and may be carried 
out in parallel with the loading of weight bits. 

For each input bit arriving at the group of neu- 
rons, the weight shift register W has to be completely 
loaded with the appropriate bits, one for each neuron 
in the group. This shift register is therefore the fastest 
operating circuit element within the design, so it is im- 
portant that  it is operated at the maximum possible 
speed. The loading time for this shift register ulti- 
mately determines the overall speed of the device. To 
maximise this, this shift register can be split up into 
sections, allowing them to be loaded in parallel. This 
does however soak up additional pins on the device, 
and make the external housekeeping circuitry more 
complicated, so some compromise must be reached. 

In order to explain the way in which the input sig- 
nals themselves are organised we shall assume that 
the neurons are configured as a fully-connected multi- 
layer feed-forward network, as illustrated in Figure 2. 
The group of neurons shown in Figure 1 will form a 
single layer within this network. The other layers will 
be formed from similar groups of neurons, either on 
the same device or another device. 

r .  P d  Layer 1 
0 1  
c r  
e e  
s c  
s t  
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n o  
g n  

Layer 2 

Layer 3 I 

Figure 2: A fully connected multilayer network 

In order for each neuron to be connected to all 
the neurons in the previous layer the stochastic bit 
streams, representing the real valued outputs of the 
neurons in this previous layer, are time multiplexed 
on to one physical input. (In the case of the first layer 

in the network, it is the network inputs which are mul- 
tiplexed.) The time multiplexing is arranged so that 
one bit from each of the appropriate bit streams is 
presented in turn. 

When the neuron has processed one bit from each 
of the time multiplexed stochastic input streams, to- 
gether with one bit corresponding to each weight, it 
produces one bit of its stochastic output stream. The 
details of the internal processing to compute this out- 
put bit are dealt with in the next section. The out- 
put bit produced by each neuron is passed to another 
shift register, constructed from elements labeled ai, 
and shown on the left hand side of Figure 1. Using 
this shift register the results may be clocked out and 
passed to the next layer of the network. It is impor- 
tant to note that on every neural cycle, each neuron 
produces only one bit. This bit is then latched and 
transfered to the next layer, via the a shift register, 
whilst the original neuron processes the next bits of 
the mutiplexed input bit streams. The serial output of 
this shift register, Qmt, automatically produces input 
bits for the next layer in the correct time multiplexed 
format. 

In this architecture the number of logical inputs to 
a particular neuron will be equal to the number of neu- 
rons in each layer. Taking the network illustrated in 
Figure 2 as an example, there are five neurons in each 
layer, so in the implementation we have described each 
neuron will receive five sequential logical inputs. The 
number of neurons in a layer may be increased very 
simply by combining groups of neurons together and 
passing the same input stream to all of them. The out- 
put shift registers from all the groups that have been 
combined may be simply joined together and will still 
contain the correct sequence of bits to be passed to the 
next layer. The number of logical interconnections in 
the fully-connected network increases with the square 
of the number of neurons in each layer, but because 
of the high degree of parallelism the speed of opera- 
tion of the physical device decreases only linearly with 
the size of each layer. The operating speed is in fact 
independent of the number of layers used, although 
additional layers will contribute to a pipeline delay 
through the network. This means that very large net- 
works of neurons can be constructed using the hard- 
ware we describe whilst maintaining a high processing 
speed. 

The final output bit streams, produced by the neu- 
rons in the last layer must be converted back into real 
values. This is easily done by counting the ones in the 
given frame of output bits with a fast binary counter. 
The real valued answer is then calculated by dividing 
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the accumulated count by the total number of bits in 
the output stream. This task would be carried out by 
the external support circuitry. 

3 The Stochastic Neuron 

In this section we describe a single digital stochas- 
tic neuron with n logical inputs, as illustrated in Fig- 
ure 3. The operation of the two shift register elements, 
SR, and Sa, which conduct the weights to the neu- 
ron and then carry away the result, have already been 
discussed in the previous section. 

The neuron has one physical input line along which 
it receives, successively, during a single operational cy- 
cle, a single bit from each of the n sequences repre- 
senting its input values. During the same operational 
cycle, the neuron also receives a single bit from each of 
the sequences representing the corresponding n weight 
values. These bits are made available by the weight 
shift register element SR, . 

t- 

Q a t  Tnczt 

1 1  a 

1 

I n e r t  wout 

Figure 3: The elements of a stochastic neuron 

The first step in the processing is to  multiply each 
input value by the corresponding weight value to ob- 
tain a weighted input value. The multiplication of the 
input bit by the weight bit is carried out by the single 
XOR gate shown in Figure 3. This simple multipli- 
cation operation is one of the primary advantages of 
the use of stochastic computing, as mentioned in the 
introduction. 

To explain its operation, consider a two input XOR 
gate with stochastic inputs p1 and pa, and a stochastic 
output p, .  The Exclusive-OR function defines that, 

Po = P l ( 1  - P2) + P2 (1  - PI) 

In order to represent real values v1 and vz, in the 
range [-I, 13 the values pl and pz become (VI + 1)/2 
and ( v ~  + 1)/2. By substituting into the above equa- 
tion for p ,  we get, 

1 1  
p ,  = 2 - 5 " l " Z  

Finally the value p ,  must be considered in the range 
[-1,1], this is achieved by applying the transformation 
v, = 2p0 - 1, giving, 

v, = -v1vz 

This is in fact the negative product of the two input 
values, so in order to ensure that the output has the 
correct polarity, either the external weight d u e s  must 
be complemented, or an Exclusive-NOR gate could be 
used. The first option can be carried out at no extra 
cost in terms of circuitry, and is therefore preferable. 

The next phase of the processing is to sum the 
weighted inputs using a counter. The value accu- 
mulated in the counter from all the weighted inputs 
is then compared against the threshold in order to 
produce an output bit. To reduce the circuitry re- 
quired we do not in fact do the comparison directly, 
instead we use an appropriate value to  initially offset 
the counter. This value is passed to the neuron by 
the T threshold shift register, shown in Figure 3. The 
offset value is chosen so that the counter will overflow 
into its top bit if the chosen threshold is exceeded. The 
output of the neuron may then simply be taken from 
the most significant bit of the counter, this is then 
connected to the answer shift register element SR,. 

Once the output bit has been obtained the counter 
is reset to the required offset value and the entire op- 
erational cycle repeats for the next bits of the TZ se- 
quences representing the weighted input values. 

4 The output threshold function 

In order to calculate the value represented by the 
output sequence from a digital stochastic neuron we 
must calculate the probability that the output bit 
takes the value one. If this probability is p ,  then the 
sequence output from the neuron will represent the 
value 2p - 1. 
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We now obtain an expression for this probability p 
by considering the probability distribution of the input 
values and the threshold value. 

Each input value will contribute 0 or 1 to the 
counter, on each operational cycle, as described above. 
Hence, the total net input contribution to the counter, 
after summing the contributions due to  all of the n in- 
puts to the neuron, wil l  be a n  integer between 0 and n. 
The probability function for this total will be denoted 

We will set the threshold value to be an integer 
in the range 0 to n - 1, chosen according to  some 
probability function. This probability function will 
be denoted by 4, and may be varied according to the 
neuronal behaviour desired, as described below. 

For notational convienience, we choose a numbering 
for all neurons and refer to  each neuron by its num- 
ber. The set of all possible neural connections will be 
labeled E, and for a connection (i, j )  E E we denote 
the associated weight value by wj;. For the purposes 
of this paper we will assume throughout that if neu- 
ron i is connected to  neuron j then j > i. Such a 
numbering can always be found provided the network 
is cycle free. This is the feedforward condition on the 
connectivity. 

A neuron will output a one if the total in the 
counter exceeds the threshold value. Hence, the prob- 
ability, p, that the digital stochastic neuron outputs a 
one, is given by: 

by 4. 

P = 4(j)d(k) 
j > k  

To demonstrate the effect of varying the distribu- 
tion 4 we will first examine two special cases: 

Uniformly distributed threshold value 

The first will be to take a uniform probability dis- 
tribution for the threshold number: 

d ( k )  = l /n;  k = O , . . . , n -  1 

In this case the probability, p, that the output bit 
is set to one is 

n n 

P = ~ ( j / n )  = (l /n) C jW 
j = 1  j=1  

The last sum is just the expected value of the 
counter input. Now this counter input is the sum of 
n independent variables, each consisting of a single 
bit from a stochastic binary sequence representing a 
weighted input value, as described above. Using the 

above terminology, if we assume that the neuron we 
are analysing is neuron i then the weighted input from 
neuron j is ojw,;. Since there are n inputs to neuron 
i, after each complete operational cycle the counter 
value is the sum of n independent variables which have 
means (ojwj; + 1)/2. This means that the expected 
value of the counter is ‘ 1  ,-E(ojwji + 1)/2, giving: 

The value represented by the output sequence is 
therefore: 

j:(i,j)EE 

This choice of 4 therefore achieves a linear activa- 
tion function. 

A single threshold value 

The second special case we consider is where all of 
d is concentrated on one value, ko: 

1; if k = ko 
0; otherwise 

In this case the probability, p ,  that the output is 
equal to one is the probability that the total net input 
contribution to the counter is greater than ko, which 
is a function of ko: 

So, in this case p is equal to  the Uprobability dis- 
tribution function” of the counter value. This counter 
value is the sum of independent contributions from 
each input, so with a large number of inputs its prob- 
ability distribution function will have a sigmoid shape. 
This is a consequence of the central limit theorem [lo]. 

Since the value o represented by the output se- 
quence is a linear function of p, this choice of d 
achieves a sigmoid activation function. Numerical sim- 
ulation indicates that a digital stochastic neuron with 
15 inputs will in fact have a reasonably smooth sig- 
moid activation function when the threshold value is 
chosen in this way. 
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Figure 4: Activation functions (15 equal inputs) 

Figure 4 shows the activation functions resulting 
from these special choices of 4. The graph shows the 
probability of the output bit being set to one on each 
operational cycle, as a function of the probability that 
each bit in the weighted input sequences is set to  one, 
for a digital stochastic neuron with 15 equal inputs. 
The sigmoid activation function shown in Figure 4 for 
the single-valued threshold distribution is obtained by 
setting a fixed threshold value of 7. 

In general the probability function $J may be chosen 
to lie between the two extremes outlined above. For 
example, 4 may be a binomial distribution for n - 1 
trials with mean m E [0, n - 11. Figure 4 shows the 
activation function obtained by choosing $J to be a bi- 
nomial distribution for 14 trials with a mean of 7. The 
fact that this distribution gives rise to an activation 
function which is intermediate between the two cases 
considered above may be seen by comparing the three 
activation functions shown in Figure 4. 

The output from the neuron is a stochastic sequence 
which may be used as a n  input to other neurons or 
used to  estimate the corresponding real value. It is im- 
portant to note that each bit of the output sequence is 
calculated independently with the probability derived 

above. Hence the variability of the sequence, and the 
number of bits required to  estimate the value which it 
represents to a given degree of accuracy, depends only 
on the value of this probability. Thus the neural pro- 
cessing described above does not cause any systematic 
increase in the variability of the stochastic sequences 
used in this design. 

5 Generating stochastic bit streams 

The large numbers of independent stochastic bit 
streams representing the real-valued inputs to the neu- 
rons and weight values may be generated very simply 
using FPGA technology, as we now describe. 

The stochastic bit stream generators synthesize the 
required output bit streams, by appropriately com- 
bining many independent stochastic bit streams with 
a bit probability of one half [6]. These fixed value bit 
streams, referred to as carrier streams, are described 
later. 

A given stochastic bit stream generator is con- 
structed as a pipeline of k series connected single bit 
modulators, one for each bit of resolution in the re- 
quired probability value. The input consists of a k bit 
binary value, representing a probability in the range 02 

to 0.1111.. .1112.  The individual k binary bits of this 
value will be called “modulation bits”, and are used 
to download a series of k ‘1’ or ‘0’ bit modulators to 
the FPGA. 

5.1 The bit modulator 

The circuit diagrams below (Figure 5 and Figure 6) 
shows the logic required to implement the respective 
bit modulators. Each bit modulator processes a bit 
stream from the preceding stage (the very first stage 
is supplied with an all zero stream of bits) according to 
the value of the corresponding modulation bit which 
in turn defines the actual circuit downloaded to the 
FPGA. 

clock 
r 

Figure 5: Bit 1 modulator element 

The output of a given bit modulator is connected 
to a clocked flip flop which allows these devices to be 
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cascaded in series, thus forming a pipeline, producing 
one new output bit with every clock cycle. 

clock 
1 

U 

Figure 6: Bit 0 modulator element 

Carrier input 

The particular logic operation implemented by a 
bit modulator depends on its type. A ‘1’ bit modu- 
lator calculates the bit-wise OR of the input stream 
and the carrier stream, whilst a ‘0’ bit modulator cal- 
culates the bit-wise AND of the input stream and the 
carrier stream. Thus very efficient usage of electrically 
reconfigurable FPGAs is possible [3], as the required 
binary probability value is directly encoded into the 
stream generator as a series of ‘1’ or ‘0’ bit modula- 
tors. To change this probability value, the relevant 
part of the FPGA is rapidly reconfigured. 

To understand the effect of each modulator on how 
the overall stream generator works, consider the prob- 
ability of a bit being set in the output of a particular 
modulator on any clock cycle when the probability of 
a bit being set in the input stream from the previous 
stage is p. If the modulator is of type ‘1’) then it fol- 
lows from the independence of the input stream and 
the carrier stream that the probability of the output 
bit being set is $ p  + $. On the other hand, if the 
modulator is of type ‘O’, then the probability of the 
output bit being set is i p .  

The combined effect of the appropriate sequence of 
modulators, is to construct a bit stream in which the 
probability of a bit being set is equal to the original 
defining k bit probability value [6]. 

Note that a full or semi-custom VLSI implementa- 
tion would require the use of generalised bit modula- 
tors to construct programmable bit stream generators. 
These devices would have an additional input to se- 
lect the appropriate functionality of the bit modulator. 
These modulation inputs would be connected, in se- 
quence, to one of k input bits representing the required 
binary probability value. The k input bits would be 
stored in a local holding register. For further details 
see [4]. Bit stream generators that are intended to 
generate fixed stochastic values may be efficiently im- 
plemented in the manner described for FPGAs, but 
would not be reconfigurable. Furthermore, the hold- 
ing register for the k bit probability value would not 
be required. 
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5.2 Bit stream resolution 

All modulators multiply their input bit streams by 
f. A consequence of this is that in a given stream gen- 
erator each modulator acquires a particular weighting 
factor with respect to the final output stream. The 
kth modulator, that is also the one furthest from the 
final output, has the smallest weighting factor. This 
then defines the resolution of a k modulator bit stream 
generator as being &. 

To accurately represent a value as a stochastic bit 
stream of this type, it is important that  the appropri- 
ate number of stream bits are processed such that any 
inaccuracies due to random variance errors are elimi- 
nated. As the bit stream is a Bernoulli sequence, its 
variance takes the form of a binomial distribution, and 
is a function of the encoded bit probability. The worst 
case variance occurs when p = i, and it can be shown 
that the number of stream bits required to achieve an 
acceptable level of accuracy is given by the following 
expression: n = 22V-a , where v is the number of bits 
in the binary probability value. 

5.3 Generating the carrier streams 

A chip containing n, k modulator, bit stream gener- 
ators will require kn statistically independent carrier 
streams. Ideally each stream should each be based on 
a truly random source of bits, but this is difficult to 
arrange and thus impractical within a digital device. 

Register length Possible tap positions 
17 3, 5,  6 
31 3, 6, 7, 13 
89 38 
127 
337 55 
521 32, 48, 158, 168 
607 105, 147, 273 
1279 216, 418 
2281 715, 915, 1029 
3217 67, 576 
4423 
9689 

1, 7, 15, 30, 63 

271, 369,370, 649, 1393, 1419, 2098 
84, 471, 1836, 2444, 4187 

Table 1: Taps for maximal length PRBS 

The solution described in this paper is to  make use 
of a linear feedback shift register, configured to gen- 
erate a maximal length pseudo random bit sequence 
[9]. The criterion for maximal length PRBS genera- 
tors ([2” - l] bits) is that the shift register polynomial 



of degree n must be primitive over the Galois field of 
order 2. 

Table 1 gives a selection of useful register sizes and 
tap positions that lead to such sequences. More de- 
tails, and further tables of shift register tap positions 
are given in [SI 111. 

combining these to  derive a third sequence (si @ti) .  If 
three carrier sequences are uncorrelated then the se- 
quence obtained by taking the bitwise AND of all three 
will have bits set with probability 0.125. However, the 
bitwise AND of the sequences s i ,  t; and (s i  et;) is the 
all zero sequence, which indicates that these three se- 
quences are highly correlated. 

Multiple streams from a small number of taps 
Multiple streams from successive taps 

One solution to  the problem of generating many in- 
dependent sequences has been described by [5] , here 
a single large PRBS generator is used. The multi- 
ple carrier streams are all derived from it by adding 
(modulo 2 addition) together in different combinations 
the outputs from a small number of taps taken from 
appropriate points along the shift register. These dis- 
tinct carrier streams, are each part of the main pseudo 
random sequence, but shifted so that they start from 
different positions. 

This follows from the fact that if two sequences ( s i )  

and ( t i )  satisfy the generator with polynomial 

n- 1 

p(.) = zn + C i Z i  + 1, 
i=2 

then the stream (r;  = si et;) also satisfies the same 
polynomial 

It is suggested in [5] that to minimise unwanted 
correlations between the derived streams the tap posi- 
tions and combinations used to produce them should 
be organised in such a way that the resulting sequences 
start from well-spaced locations in the original se- 
quence. However, it should be noted that this is not 
sufficient to  ensure that the derived sequences are not 
highly correlated. In fact, if the number of derived 
sequences is greater than the number of taps then this 
method is bound to introduce correlations between 
them. 

To illustrate this point consider using just two tap 
positions yielding two sequences, ( s i )  and (ti), and 
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The method presented in this paper for generating 
the carrier streams also makes use of a single max- 
imal length PRBS generator. The streams are sim- 
ply obtained directly by tapping successive elements of 
the PRBS shift register. These bit streams are highly 
overlapping, but almost perfectly uncorrelated [6]. 

Any realistic device will require a large number of 
carrier streams, such that typical shift register lengths 
will be of the order of 1000 bits (lengths of this order 
will also produce extremely long PRBS sequences). 
Such a shift register would be sectioned up, with each 
portion supplying carrier streams to the local stream 
generators. In this way a large PRBS shift register 
can be conveniently and efficiently distributed across 
a chip. 

In order to ensure that the carrier stream inputs 
to successive modulators in a bit stream generator do 
not coincide we simply clock the PRBS shift regis- 
ter and the stochastic bit stream generators such that 
they produce their bit streams in opposite directions 
relative to each other. In this way the elements of 
the PRBS sequence (si) which are used for the gen- 
eration of the j-th bit from a bit stream generator 
with IC modulators are si, sj+2,.  . . , s j + ~ k - 2 .  Provided 
2k 5 n, where n is the length of the PRBS shift reg- 
ister, then all possible k-binary sequences will be gen- 
erated equally often at these positions, as the PRBS 
shift register is clocked, with the exception of the all 
zero sequence which will have a probability deficit of 
1/(2n - 1). Hence for large values of n, the inputs 
to the modulators will be effectively uncorrelated and 
will have almost exactly the correct frequencies of 0’s 
and 1’s. 

6 Simulation results 

In order to demonstrate the functionality of the 
“Digital Stochastic Neuron”, we have used them to 
perform Mean Field Annealing (MFA) [12]. MFA is 
a technique of approximating the simulated anneal- 
ing (Boltzmann machine) approach to  finding solu- 



tions to NP-hard problems [13]. Rather than perform 
updates probabilistically to find a global minimum of 
the energy function, as in simulated annealing, the av- 
erage activations of neurons are computed as real val- 
ued quantities using a deterministic sigmoid function. 
The computation is iterated with gradually reducing 
temperature until approximately binary values are ob- 
tained, which are taken as an approximate solution. 

In our experiment we used digital stochastic neu- 
rons in place of standard sigmoid function neurons, 
meaning that the binary values of the Boltrmann ma- 
chine were being represented by real values, imple- 
mented as stochastic bit streams! The problem consid- 
ered was that of graph bipartition. This NP-complete 
problem requires a given graph to be bisected with 
minimum number of edges in the cut set. The prob- 
lem is cast as minimising an  energy function consisting 
of the number of edges C(V1, V2) passing between the 
two partitions of vertices VI and V2 together with an 
extra term (IVll - IVZI)~ /8, to ensure that the parti- 
tion is even. 

We compared the performance of standard MFA 
with the use of Bit Stream Neurons by comparing 
number of iterations and quality of solution, measured 
by the energy function described above. Hence the 
lower the energy the better the solution. The graphs 
we are using have been generated by taking two sets of 
vertices of size m, and for each pair of vertices putting 
an edge between them with probability crln if they 
are in the same set and p/n if they are in different 
sets. By choosing p < a we ensure that there will be 
a good bisection of the graph, though it may not coin- 
cide exactly with the original partition. To ensure that 
the algorithm knew nothing of the generation process 
the vertices were subjected to a random renumbering 
before the graph was processed by the algorithms. 

We give results for three sets of experiments. In the 
first experiment we took CY = 20 and p = 7 and ran 
the algorithms for a number of different sized graphs. 
Table 2 shows the results obtained. 

G r a p h s i e  
60 + 60 
70 + 70 
80 + 80 
90 + 90 

100 + 100 
110 + 110 
120 + 120 
130 + 130 

70 + 70 
80 + 80 
90 + 90 

100 + 100 
110 + 110 
120 + 120 

MFA BSN 
431.517 362.5/11 
505.0/5 505.0118 

661.0/11 598.5/18 
653.0/6 653.0/18 
749.017 747.0/34 
909.5/9 819.5/32 
898.0/23 908.5/24 
1031.0/8 1009.5/11 

MFA 
193.517 
223.015 
284.014 
324.516 

395.5123 
392.018 
553.015 

BSN 
193.5115 
223.0118 
291.0110 
328.511 1 
381.0/25 
397.0122 
553.0133 

Table 2: Results obtained with standard MFA and Bit 
Stream Neurons on graphs generated with CY = 20 and 
p = 7. The results are in the form of Final energy/No 
of iterations. 

Table 3: Results obtained with standard MFA and Bit 
Stream Neurons on graphs generated with a = 30 and 
p = 15. The results are in the form of Final energy/No 
of iterations. 

The thud experiment considered a range of graphs 
generated with (Y = 30 and p = 25. These graphs 
were potentially harder to bisect, because the gener- 
ated division is far less well defined. Table 4 shows 
the results obtained. 

Table 4: Results obtained with standard MFA and Bit 
Stream Neurons on graphs generated with a = 30 and 
p = 25. The results are in the form of Final energy/No 
of iterations. 

As can be seen from the results the Bit Stream Neu- 
rons generally require a few more iterations, though it 
should be clear from the design that these are effec- 
tively pipelined, creating very little delay indeed. As 
far as quality of solution is concerned the Bit Stream 
Neurons appear to outperform classical MFA in the 
majority of cases, though the differences are not large. 
It should be stated that no fine tuning of either of the 
approaches has been made, so that it is difficult to 
draw any final conclusions. The results do, however, 
demonstrate that Bit Stream Neuron functionality is 
effective when applied in the MFA algorithm. 

7 Conclusion 

We have described in this paper a neural net- 
work implementation using the techniques of stochas- 
tic computing which requires very simple digital cir- 
cuitry. We have also described how the use of time 
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multiplexing allows fully-connected multiple-layer net- 
works to  be conveniently implemented using this cir- 
cuitry. Time multiplexing is particularly suitable 
when the inputs being processed are inherently serial, 
as for example with video input data [14]. 

The design for each individual neuron, as described 
in this paper, is extremely compact and regular with 
very little global wiring, thus allowing very efficient 
use of FPGAs. Furthermore, dynamically reconfig- 
urable FPGAs may be conveniently exploited by the 
binary to  stochastic bit stream conversion circuitry. 
Here the required weight and input probability values 
may be directly encoded into the FPGA with no loss 
of functionality, allowing a significant saving in macro 
cells, ie. larger designs can be accomodated on a given 
FPGA. 

The use of reconfigurable FPGAs also allows the 
overall network architecture to be easily modified or 
replaced, by simply downloading new circuitry. This 
would allow the development of a sophisticated high 
level interface that could compile a given neural archi- 
tecture directly to FPGA based hardware. 

The design also allows groups of neurons to be 
linked, so as to increase the width of layers within 
a network, with only linear decrease in the speed of 
operation. 

The circuitry we have described can also .be cas- 
caded in layers with the output binary sequences of 
one layer being passed directly as inputs to the next 
layer. In this way the operation of the whole network 
is synchonised and the extra layers only add a pipeline 
delay to the time required for the output to  be assem- 
bled. 

We therefore believe that the techniques described 
here offer considerable potential for the construction of 
very large scale neural networks using reconfigurable 
FPGA technology. 
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