
A stochastic neural architecture that exploits
dynamically reconfigurable FPGAs

Max van Daalen, Peter Jeavons and John Shawe-Taylor,
Connection Science and Machine Learning Group,

Department of Computer Science,
Royal Holloway University of London,

Egham, Surrey TW20 OEX,
United Kingdom

Abstract

I n this paper we present an ezpandable digital archi-
tecture that provides a n eflcient real time implemen-
tation platform for large neural networks. The archi-
tecture makes heavy use of the techniques of bit serial
stochastic computing to carry out the large number of
required parallel synaptic calculations. In this design
all real valued quantities are encoded on to stochas-
tic bit streams in which the ‘ I ’ density is proportional
to the given quantity. The actual digital circuitry is
simple and highly regular thus allowing very eficient
space usage of fine grained FPGAs.

Another feature of the design is that the large num-
ber of weights required by a neural network are gener-
ated by circuitry tailored to each of their specific val-
ues, thus saving valuable cells. Whenever one of these
values is required to change, the appropriate circuitry
must be dynamically reconfigured. This may always be
achieved in a fized and minimum number of cells for
a given bit stream resolution.

1 Introduction

One of the major constraints on hardware imple-
mentations of neural networks 11, 21, is the amount
of circuitry required to perform the multiplication of
each input by its correspsonding weight. This prob-
lem is especially acute in digital designs, where paral-
lel multipliers are extremely expensive in terms of cir-
cuitry. Adopting an equivalent bit serial architecture,
significantly reduces this complexity, but still tends to
result in large and complex overall designs. A single
such multiplier would consume a significant propor-
tion of a current state of the art FPGA, thus making
the use of such devices impractical for this approach.

This paper describes an alternative neural network
architecture which may be implemented using stan-
dard VLSI technology, but also maps extremely effi-
ciently to dynamically reconfigurable FPGAs [3]. The
central idea is to represent the real-valued signals
passing between neurons using stochastic binary se-
quences. In order to represent a real value of ‘U, in the
range [-1, 13, we use a stochastic sequence in which the
probability of each bit being set to one is (v + 1) /2.
Given two independent bit sequences of this type, rep-
resenting two real values, the sequence obtained by
calculating the exclusive-or of the two bit streams will
represent the product of the two values. This means
that multiplication of real values may be achieved US-
ing very simple logic circuitry: a single XOR gate.

The circuitry used to generate the proposed
stochastic bit streams is highly pipelined and thus po-
tentially extremely fast [4]. The individual pipeline
stages, known as modulators are simple, and the num-
ber used defines the overall resolution of the generated
bit stream. The approach taken is to synthesize the
required stochastic bit stream by appropriately com-
bining many independent stochastic bit streams with
a bit probability of one half [6]. These fixed value
bit streams, referred to as carrier streams, are easy to
generate using linear feedback shift registers [5, 41, as
described later.

The use of stochastic bit streams also enables each
neuron to calculate a suitable activation function using
very simple circuitry. In fact, the activation function
is obtained by using the interaction of the probabil-
ity distribution of the input bits, and the probability
distribution of a threshold value, in the following way:
the weighted input bits to each neuron are summed
using a simple counter and the final total is compared
to a preloaded threshold value. The result of this com-
parison determines the output of the neuron, which is

202
0-8186-3890-7193 $03.00 0 1993 IEEE

a single bit forming part of a stochastic bit stream
representing the result of the activation function.

With this simple circuitry, various different activa-
tion functions can be obtained depending on the choice
of the probability distribution for the threshold value.
For example, a linear activation function may be ob-
tained by using a uniform probability distribution for
the threshold value, a sigmoid activation function may
be obtained by using an impulse-function probability
distribution for the threshold value. A detailed anal-
ysis of these results is presented in [7].

Another of the problems facing VLSI neural net-
works is the high degree of connectivity between in-
dividual neurons. The use of stochastic bit streams
and time division multiplexing has made it possible to
design a neuron that behaves as if it has many inputs
from other neurons, but in fact has only one physi-
cal connection. For this reason, the physical connec-
tivity between the neurons in the design we propose
is very straight forward. This allows the number of
neurons per device to be very high, as they can be
efficiently packed in tightly spaced regular structures,
with a minimum of global wiring. These factors are
very important when FPGAs are to be used as the
hardware implementation platform, as both the macro
cells and the limited amount of global wiring can be
efficiently allocated.

As in all applications of stochastic computing, the
design allows a flexible tradeoff between speed and
precision because the precision of the output may be
increased by processing more bits [8] . The most signif-
icant aspect of the design, with regard to the overall
speed of operation, is that it readily allows successive
layers of a network to be pipelined. This means that
very large networks may be constructed by cascading
several single or multi-layer chips, and the throughput
rate wil l be independent of the total number of layers.

The purpose of this paper is to describe the over-
all architecture of the proposed design and show how
it may be efficiently mapped to dynamically reconfig-
urable FPGAs, and thus used to implement standard
neuron models. A possible learning algorithm for a
neural network of this type is described in [7].

We begin by describing the overall architecture of
the type of neural network described by this paper,
and explain the techniques used to allow the individual
neurons to be fully connected. We then describe the
detailed operation of an idividual neuron, including a
detailed explanation of the novel statistical technique
used to generate an appropriate activation function.
Finally, we present details of the design for the novel
circuitry used to generate the large number of real val-

ued stochastic bit streams, and describe experimental
results obtained from simulations.

2 The Overall Network Architecture

A block diagram of the basic layout of a group of
neurons on an FPGA, all sharing the same input, is
illustrated in Figure 1. Depending on the size of the
package available, there may be several such groups
accomodated on a single FPGA.

Associated with each bit arriving on the shared in-
put line to each neuron, there is a unique weight bit.
The stochastic values representing the values of these
weights are generated either off-chip, or on-chip by
the circuitry described later in this paper. One bit
from each of the streams representing the weights is
distributed to each neuron via the shift register ele-
ments labelled wn, drawn down the right hand side of
Figure 1.

T;n Qin ‘4-h
I I
I I
I I

I -

l l

input

Q a t

Figure 1: Layout of a group of neurons within a chip

Each neuron also has associated with it a section
of another shift register, that is used to load it with a
threshold value. The input line to this shift register is
labelled Ti,, in Figure 1, and the connections between
successive sections are indicated by the links between
successive neurons. The threshold values, which are
represented as normal binary integers, are loaded into

203

this shift register whenever the neuronal thresholds are
updated. The loading of threshold values is performed
by the external support circuitry, and may be carried
out in parallel with the loading of weight bits.

For each input bit arriving at the group of neu-
rons, the weight shift register W has to be completely
loaded with the appropriate bits, one for each neuron
in the group. This shift register is therefore the fastest
operating circuit element within the design, so it is im-
portant that it is operated at the maximum possible
speed. The loading time for this shift register ulti-
mately determines the overall speed of the device. To
maximise this, this shift register can be split up into
sections, allowing them to be loaded in parallel. This
does however soak up additional pins on the device,
and make the external housekeeping circuitry more
complicated, so some compromise must be reached.

In order to explain the way in which the input sig-
nals themselves are organised we shall assume that
the neurons are configured as a fully-connected multi-
layer feed-forward network, as illustrated in Figure 2.
The group of neurons shown in Figure 1 will form a
single layer within this network. The other layers will
be formed from similar groups of neurons, either on
the same device or another device.

r . P d Layer 1
0 1
c r
e e
s c
s t
i i
n o
g n

Layer 2

Layer 3 I

Figure 2: A fully connected multilayer network

In order for each neuron to be connected to all
the neurons in the previous layer the stochastic bit
streams, representing the real valued outputs of the
neurons in this previous layer, are time multiplexed
on to one physical input. (In the case of the first layer

in the network, it is the network inputs which are mul-
tiplexed.) The time multiplexing is arranged so that
one bit from each of the appropriate bit streams is
presented in turn.

When the neuron has processed one bit from each
of the time multiplexed stochastic input streams, to-
gether with one bit corresponding to each weight, it
produces one bit of its stochastic output stream. The
details of the internal processing to compute this out-
put bit are dealt with in the next section. The out-
put bit produced by each neuron is passed to another
shift register, constructed from elements labeled ai,
and shown on the left hand side of Figure 1. Using
this shift register the results may be clocked out and
passed to the next layer of the network. It is impor-
tant to note that on every neural cycle, each neuron
produces only one bit. This bit is then latched and
transfered to the next layer, via the a shift register,
whilst the original neuron processes the next bits of
the mutiplexed input bit streams. The serial output of
this shift register, Qmt, automatically produces input
bits for the next layer in the correct time multiplexed
format.

In this architecture the number of logical inputs to
a particular neuron will be equal to the number of neu-
rons in each layer. Taking the network illustrated in
Figure 2 as an example, there are five neurons in each
layer, so in the implementation we have described each
neuron will receive five sequential logical inputs. The
number of neurons in a layer may be increased very
simply by combining groups of neurons together and
passing the same input stream to all of them. The out-
put shift registers from all the groups that have been
combined may be simply joined together and will still
contain the correct sequence of bits to be passed to the
next layer. The number of logical interconnections in
the fully-connected network increases with the square
of the number of neurons in each layer, but because
of the high degree of parallelism the speed of opera-
tion of the physical device decreases only linearly with
the size of each layer. The operating speed is in fact
independent of the number of layers used, although
additional layers will contribute to a pipeline delay
through the network. This means that very large net-
works of neurons can be constructed using the hard-
ware we describe whilst maintaining a high processing
speed.

The final output bit streams, produced by the neu-
rons in the last layer must be converted back into real
values. This is easily done by counting the ones in the
given frame of output bits with a fast binary counter.
The real valued answer is then calculated by dividing

204

the accumulated count by the total number of bits in
the output stream. This task would be carried out by
the external support circuitry.

3 The Stochastic Neuron

In this section we describe a single digital stochas-
tic neuron with n logical inputs, as illustrated in Fig-
ure 3. The operation of the two shift register elements,
SR, and Sa, which conduct the weights to the neu-
ron and then carry away the result, have already been
discussed in the previous section.

The neuron has one physical input line along which
it receives, successively, during a single operational cy-
cle, a single bit from each of the n sequences repre-
senting its input values. During the same operational
cycle, the neuron also receives a single bit from each of
the sequences representing the corresponding n weight
values. These bits are made available by the weight
shift register element SR, .

t-

Q a t Tnczt

1 1 a

1

I n e r t wout

Figure 3: The elements of a stochastic neuron

The first step in the processing is to multiply each
input value by the corresponding weight value to ob-
tain a weighted input value. The multiplication of the
input bit by the weight bit is carried out by the single
XOR gate shown in Figure 3. This simple multipli-
cation operation is one of the primary advantages of
the use of stochastic computing, as mentioned in the
introduction.

To explain its operation, consider a two input XOR
gate with stochastic inputs p1 and pa, and a stochastic
output p, . The Exclusive-OR function defines that,

Po = P l (1 - P2) + P2 (1 - PI)

In order to represent real values v1 and vz, in the
range [-I, 13 the values pl and pz become (VI + 1)/2
and (v ~ + 1)/2. By substituting into the above equa-
tion for p , we get,

1 1
p , = 2 - 5 " l " Z

Finally the value p , must be considered in the range
[-1,1], this is achieved by applying the transformation
v, = 2p0 - 1, giving,

v, = -v1vz

This is in fact the negative product of the two input
values, so in order to ensure that the output has the
correct polarity, either the external weight d u e s must
be complemented, or an Exclusive-NOR gate could be
used. The first option can be carried out at no extra
cost in terms of circuitry, and is therefore preferable.

The next phase of the processing is to sum the
weighted inputs using a counter. The value accu-
mulated in the counter from all the weighted inputs
is then compared against the threshold in order to
produce an output bit. To reduce the circuitry re-
quired we do not in fact do the comparison directly,
instead we use an appropriate value to initially offset
the counter. This value is passed to the neuron by
the T threshold shift register, shown in Figure 3. The
offset value is chosen so that the counter will overflow
into its top bit if the chosen threshold is exceeded. The
output of the neuron may then simply be taken from
the most significant bit of the counter, this is then
connected to the answer shift register element SR,.

Once the output bit has been obtained the counter
is reset to the required offset value and the entire op-
erational cycle repeats for the next bits of the TZ se-
quences representing the weighted input values.

4 The output threshold function

In order to calculate the value represented by the
output sequence from a digital stochastic neuron we
must calculate the probability that the output bit
takes the value one. If this probability is p , then the
sequence output from the neuron will represent the
value 2p - 1.

205

We now obtain an expression for this probability p
by considering the probability distribution of the input
values and the threshold value.

Each input value will contribute 0 or 1 to the
counter, on each operational cycle, as described above.
Hence, the total net input contribution to the counter,
after summing the contributions due to all of the n in-
puts to the neuron, wil l be a n integer between 0 and n.
The probability function for this total will be denoted

We will set the threshold value to be an integer
in the range 0 to n - 1, chosen according to some
probability function. This probability function will
be denoted by 4, and may be varied according to the
neuronal behaviour desired, as described below.

For notational convienience, we choose a numbering
for all neurons and refer to each neuron by its num-
ber. The set of all possible neural connections will be
labeled E, and for a connection (i, j) E E we denote
the associated weight value by wj;. For the purposes
of this paper we will assume throughout that if neu-
ron i is connected to neuron j then j > i. Such a
numbering can always be found provided the network
is cycle free. This is the feedforward condition on the
connectivity.

A neuron will output a one if the total in the
counter exceeds the threshold value. Hence, the prob-
ability, p, that the digital stochastic neuron outputs a
one, is given by:

by 4.

P = 4(j)d(k)
j > k

To demonstrate the effect of varying the distribu-
tion 4 we will first examine two special cases:

Uniformly distributed threshold value

The first will be to take a uniform probability dis-
tribution for the threshold number:

d (k) = l /n; k = O , . . . , n - 1

In this case the probability, p, that the output bit
is set to one is

n n

P = ~ (j / n) = (l /n) C jW
j = 1 j=1

The last sum is just the expected value of the
counter input. Now this counter input is the sum of
n independent variables, each consisting of a single
bit from a stochastic binary sequence representing a
weighted input value, as described above. Using the

above terminology, if we assume that the neuron we
are analysing is neuron i then the weighted input from
neuron j is ojw,;. Since there are n inputs to neuron
i, after each complete operational cycle the counter
value is the sum of n independent variables which have
means (ojwj; + 1)/2. This means that the expected
value of the counter is ‘ 1 ,-E(ojwji + 1)/2, giving:

The value represented by the output sequence is
therefore:

j:(i,j)EE

This choice of 4 therefore achieves a linear activa-
tion function.

A single threshold value

The second special case we consider is where all of
d is concentrated on one value, ko:

1; if k = ko
0; otherwise

In this case the probability, p , that the output is
equal to one is the probability that the total net input
contribution to the counter is greater than ko, which
is a function of ko:

So, in this case p is equal to the Uprobability dis-
tribution function” of the counter value. This counter
value is the sum of independent contributions from
each input, so with a large number of inputs its prob-
ability distribution function will have a sigmoid shape.
This is a consequence of the central limit theorem [lo].

Since the value o represented by the output se-
quence is a linear function of p, this choice of d
achieves a sigmoid activation function. Numerical sim-
ulation indicates that a digital stochastic neuron with
15 inputs will in fact have a reasonably smooth sig-
moid activation function when the threshold value is
chosen in this way.

206

.. . Uniform Threshold Distribution (0-14)
- - - - Single Valued Threshold Distribution (7)
- Binomial Threshold Distribution (mean 7)

1 .o

0.8

2. - 2 0.6

e n

5 0.4
0

m I)

-
3 P

0.2

nn -_-
0.0 0.2 0.4 0.6 0.8 1 .o

Input Probability

Figure 4: Activation functions (15 equal inputs)

Figure 4 shows the activation functions resulting
from these special choices of 4. The graph shows the
probability of the output bit being set to one on each
operational cycle, as a function of the probability that
each bit in the weighted input sequences is set to one,
for a digital stochastic neuron with 15 equal inputs.
The sigmoid activation function shown in Figure 4 for
the single-valued threshold distribution is obtained by
setting a fixed threshold value of 7.

In general the probability function $J may be chosen
to lie between the two extremes outlined above. For
example, 4 may be a binomial distribution for n - 1
trials with mean m E [0, n - 11. Figure 4 shows the
activation function obtained by choosing $J to be a bi-
nomial distribution for 14 trials with a mean of 7. The
fact that this distribution gives rise to an activation
function which is intermediate between the two cases
considered above may be seen by comparing the three
activation functions shown in Figure 4.

The output from the neuron is a stochastic sequence
which may be used as a n input to other neurons or
used to estimate the corresponding real value. It is im-
portant to note that each bit of the output sequence is
calculated independently with the probability derived

above. Hence the variability of the sequence, and the
number of bits required to estimate the value which it
represents to a given degree of accuracy, depends only
on the value of this probability. Thus the neural pro-
cessing described above does not cause any systematic
increase in the variability of the stochastic sequences
used in this design.

5 Generating stochastic bit streams

The large numbers of independent stochastic bit
streams representing the real-valued inputs to the neu-
rons and weight values may be generated very simply
using FPGA technology, as we now describe.

The stochastic bit stream generators synthesize the
required output bit streams, by appropriately com-
bining many independent stochastic bit streams with
a bit probability of one half [6]. These fixed value bit
streams, referred to as carrier streams, are described
later.

A given stochastic bit stream generator is con-
structed as a pipeline of k series connected single bit
modulators, one for each bit of resolution in the re-
quired probability value. The input consists of a k bit
binary value, representing a probability in the range 02

to 0.1111.. .1112. The individual k binary bits of this
value will be called “modulation bits”, and are used
to download a series of k ‘1’ or ‘0’ bit modulators to
the FPGA.

5.1 The bit modulator

The circuit diagrams below (Figure 5 and Figure 6)
shows the logic required to implement the respective
bit modulators. Each bit modulator processes a bit
stream from the preceding stage (the very first stage
is supplied with an all zero stream of bits) according to
the value of the corresponding modulation bit which
in turn defines the actual circuit downloaded to the
FPGA.

clock
r

Figure 5: Bit 1 modulator element

The output of a given bit modulator is connected
to a clocked flip flop which allows these devices to be

207

cascaded in series, thus forming a pipeline, producing
one new output bit with every clock cycle.

clock
1

U

Figure 6: Bit 0 modulator element

Carrier input

The particular logic operation implemented by a
bit modulator depends on its type. A ‘1’ bit modu-
lator calculates the bit-wise OR of the input stream
and the carrier stream, whilst a ‘0’ bit modulator cal-
culates the bit-wise AND of the input stream and the
carrier stream. Thus very efficient usage of electrically
reconfigurable FPGAs is possible [3], as the required
binary probability value is directly encoded into the
stream generator as a series of ‘1’ or ‘0’ bit modula-
tors. To change this probability value, the relevant
part of the FPGA is rapidly reconfigured.

To understand the effect of each modulator on how
the overall stream generator works, consider the prob-
ability of a bit being set in the output of a particular
modulator on any clock cycle when the probability of
a bit being set in the input stream from the previous
stage is p. If the modulator is of type ‘1’) then it fol-
lows from the independence of the input stream and
the carrier stream that the probability of the output
bit being set is $ p + $. On the other hand, if the
modulator is of type ‘O’, then the probability of the
output bit being set is i p .

The combined effect of the appropriate sequence of
modulators, is to construct a bit stream in which the
probability of a bit being set is equal to the original
defining k bit probability value [6].

Note that a full or semi-custom VLSI implementa-
tion would require the use of generalised bit modula-
tors to construct programmable bit stream generators.
These devices would have an additional input to se-
lect the appropriate functionality of the bit modulator.
These modulation inputs would be connected, in se-
quence, to one of k input bits representing the required
binary probability value. The k input bits would be
stored in a local holding register. For further details
see [4]. Bit stream generators that are intended to
generate fixed stochastic values may be efficiently im-
plemented in the manner described for FPGAs, but
would not be reconfigurable. Furthermore, the hold-
ing register for the k bit probability value would not
be required.

208

5.2 Bit stream resolution

All modulators multiply their input bit streams by
f. A consequence of this is that in a given stream gen-
erator each modulator acquires a particular weighting
factor with respect to the final output stream. The
kth modulator, that is also the one furthest from the
final output, has the smallest weighting factor. This
then defines the resolution of a k modulator bit stream
generator as being &.

To accurately represent a value as a stochastic bit
stream of this type, it is important that the appropri-
ate number of stream bits are processed such that any
inaccuracies due to random variance errors are elimi-
nated. As the bit stream is a Bernoulli sequence, its
variance takes the form of a binomial distribution, and
is a function of the encoded bit probability. The worst
case variance occurs when p = i, and it can be shown
that the number of stream bits required to achieve an
acceptable level of accuracy is given by the following
expression: n = 22V-a , where v is the number of bits
in the binary probability value.

5.3 Generating the carrier streams

A chip containing n, k modulator, bit stream gener-
ators will require kn statistically independent carrier
streams. Ideally each stream should each be based on
a truly random source of bits, but this is difficult to
arrange and thus impractical within a digital device.

Register length Possible tap positions
17 3, 5, 6
31 3, 6, 7, 13
89 38
127
337 55
521 32, 48, 158, 168
607 105, 147, 273
1279 216, 418
2281 715, 915, 1029
3217 67, 576
4423
9689

1, 7, 15, 30, 63

271, 369,370, 649, 1393, 1419, 2098
84, 471, 1836, 2444, 4187

Table 1: Taps for maximal length PRBS

The solution described in this paper is to make use
of a linear feedback shift register, configured to gen-
erate a maximal length pseudo random bit sequence
[9]. The criterion for maximal length PRBS genera-
tors ([2” - l] bits) is that the shift register polynomial

of degree n must be primitive over the Galois field of
order 2.

Table 1 gives a selection of useful register sizes and
tap positions that lead to such sequences. More de-
tails, and further tables of shift register tap positions
are given in [SI 111.

combining these to derive a third sequence (si @ti) . If
three carrier sequences are uncorrelated then the se-
quence obtained by taking the bitwise AND of all three
will have bits set with probability 0.125. However, the
bitwise AND of the sequences s i , t; and (s i et;) is the
all zero sequence, which indicates that these three se-
quences are highly correlated.

Multiple streams from a small number of taps
Multiple streams from successive taps

One solution to the problem of generating many in-
dependent sequences has been described by [5] , here
a single large PRBS generator is used. The multi-
ple carrier streams are all derived from it by adding
(modulo 2 addition) together in different combinations
the outputs from a small number of taps taken from
appropriate points along the shift register. These dis-
tinct carrier streams, are each part of the main pseudo
random sequence, but shifted so that they start from
different positions.

This follows from the fact that if two sequences (s i)

and (t i) satisfy the generator with polynomial

n- 1

p(.) = zn + C i Z i + 1,
i=2

then the stream (r; = si et;) also satisfies the same
polynomial

It is suggested in [5] that to minimise unwanted
correlations between the derived streams the tap posi-
tions and combinations used to produce them should
be organised in such a way that the resulting sequences
start from well-spaced locations in the original se-
quence. However, it should be noted that this is not
sufficient to ensure that the derived sequences are not
highly correlated. In fact, if the number of derived
sequences is greater than the number of taps then this
method is bound to introduce correlations between
them.

To illustrate this point consider using just two tap
positions yielding two sequences, (s i) and (ti), and

209

The method presented in this paper for generating
the carrier streams also makes use of a single max-
imal length PRBS generator. The streams are sim-
ply obtained directly by tapping successive elements of
the PRBS shift register. These bit streams are highly
overlapping, but almost perfectly uncorrelated [6].

Any realistic device will require a large number of
carrier streams, such that typical shift register lengths
will be of the order of 1000 bits (lengths of this order
will also produce extremely long PRBS sequences).
Such a shift register would be sectioned up, with each
portion supplying carrier streams to the local stream
generators. In this way a large PRBS shift register
can be conveniently and efficiently distributed across
a chip.

In order to ensure that the carrier stream inputs
to successive modulators in a bit stream generator do
not coincide we simply clock the PRBS shift regis-
ter and the stochastic bit stream generators such that
they produce their bit streams in opposite directions
relative to each other. In this way the elements of
the PRBS sequence (si) which are used for the gen-
eration of the j-th bit from a bit stream generator
with IC modulators are si, sj+2,. . . , s j + ~ k - 2 . Provided
2k 5 n, where n is the length of the PRBS shift reg-
ister, then all possible k-binary sequences will be gen-
erated equally often at these positions, as the PRBS
shift register is clocked, with the exception of the all
zero sequence which will have a probability deficit of
1/(2n - 1). Hence for large values of n, the inputs
to the modulators will be effectively uncorrelated and
will have almost exactly the correct frequencies of 0’s
and 1’s.

6 Simulation results

In order to demonstrate the functionality of the
“Digital Stochastic Neuron”, we have used them to
perform Mean Field Annealing (MFA) [12]. MFA is
a technique of approximating the simulated anneal-
ing (Boltzmann machine) approach to finding solu-

tions to NP-hard problems [13]. Rather than perform
updates probabilistically to find a global minimum of
the energy function, as in simulated annealing, the av-
erage activations of neurons are computed as real val-
ued quantities using a deterministic sigmoid function.
The computation is iterated with gradually reducing
temperature until approximately binary values are ob-
tained, which are taken as an approximate solution.

In our experiment we used digital stochastic neu-
rons in place of standard sigmoid function neurons,
meaning that the binary values of the Boltrmann ma-
chine were being represented by real values, imple-
mented as stochastic bit streams! The problem consid-
ered was that of graph bipartition. This NP-complete
problem requires a given graph to be bisected with
minimum number of edges in the cut set. The prob-
lem is cast as minimising an energy function consisting
of the number of edges C(V1, V2) passing between the
two partitions of vertices VI and V2 together with an
extra term (IVll - IVZI)~ /8, to ensure that the parti-
tion is even.

We compared the performance of standard MFA
with the use of Bit Stream Neurons by comparing
number of iterations and quality of solution, measured
by the energy function described above. Hence the
lower the energy the better the solution. The graphs
we are using have been generated by taking two sets of
vertices of size m, and for each pair of vertices putting
an edge between them with probability crln if they
are in the same set and p/n if they are in different
sets. By choosing p < a we ensure that there will be
a good bisection of the graph, though it may not coin-
cide exactly with the original partition. To ensure that
the algorithm knew nothing of the generation process
the vertices were subjected to a random renumbering
before the graph was processed by the algorithms.

We give results for three sets of experiments. In the
first experiment we took CY = 20 and p = 7 and ran
the algorithms for a number of different sized graphs.
Table 2 shows the results obtained.

G r a p h s i e
60 + 60
70 + 70
80 + 80
90 + 90

100 + 100
110 + 110
120 + 120
130 + 130

70 + 70
80 + 80
90 + 90

100 + 100
110 + 110
120 + 120

MFA BSN
431.517 362.5/11
505.0/5 505.0118

661.0/11 598.5/18
653.0/6 653.0/18
749.017 747.0/34
909.5/9 819.5/32
898.0/23 908.5/24
1031.0/8 1009.5/11

MFA
193.517
223.015
284.014
324.516

395.5123
392.018
553.015

BSN
193.5115
223.0118
291.0110
328.511 1
381.0/25
397.0122
553.0133

Table 2: Results obtained with standard MFA and Bit
Stream Neurons on graphs generated with CY = 20 and
p = 7. The results are in the form of Final energy/No
of iterations.

Table 3: Results obtained with standard MFA and Bit
Stream Neurons on graphs generated with a = 30 and
p = 15. The results are in the form of Final energy/No
of iterations.

The thud experiment considered a range of graphs
generated with (Y = 30 and p = 25. These graphs
were potentially harder to bisect, because the gener-
ated division is far less well defined. Table 4 shows
the results obtained.

Table 4: Results obtained with standard MFA and Bit
Stream Neurons on graphs generated with a = 30 and
p = 25. The results are in the form of Final energy/No
of iterations.

As can be seen from the results the Bit Stream Neu-
rons generally require a few more iterations, though it
should be clear from the design that these are effec-
tively pipelined, creating very little delay indeed. As
far as quality of solution is concerned the Bit Stream
Neurons appear to outperform classical MFA in the
majority of cases, though the differences are not large.
It should be stated that no fine tuning of either of the
approaches has been made, so that it is difficult to
draw any final conclusions. The results do, however,
demonstrate that Bit Stream Neuron functionality is
effective when applied in the MFA algorithm.

7 Conclusion

We have described in this paper a neural net-
work implementation using the techniques of stochas-
tic computing which requires very simple digital cir-
cuitry. We have also described how the use of time

210

multiplexing allows fully-connected multiple-layer net-
works to be conveniently implemented using this cir-
cuitry. Time multiplexing is particularly suitable
when the inputs being processed are inherently serial,
as for example with video input data [14].

The design for each individual neuron, as described
in this paper, is extremely compact and regular with
very little global wiring, thus allowing very efficient
use of FPGAs. Furthermore, dynamically reconfig-
urable FPGAs may be conveniently exploited by the
binary to stochastic bit stream conversion circuitry.
Here the required weight and input probability values
may be directly encoded into the FPGA with no loss
of functionality, allowing a significant saving in macro
cells, ie. larger designs can be accomodated on a given
FPGA.

The use of reconfigurable FPGAs also allows the
overall network architecture to be easily modified or
replaced, by simply downloading new circuitry. This
would allow the development of a sophisticated high
level interface that could compile a given neural archi-
tecture directly to FPGA based hardware.

The design also allows groups of neurons to be
linked, so as to increase the width of layers within
a network, with only linear decrease in the speed of
operation.

The circuitry we have described can also .be cas-
caded in layers with the output binary sequences of
one layer being passed directly as inputs to the next
layer. In this way the operation of the whole network
is synchonised and the extra layers only add a pipeline
delay to the time required for the output to be assem-
bled.

We therefore believe that the techniques described
here offer considerable potential for the construction of
very large scale neural networks using reconfigurable
FPGA technology.

References

[l] A. F. Murray, “Pulse Arithmetic in VLSI Neural
Networks”, IEEE Micro 9, 1989, pp. 64-74.

[2] M. S. Tomlinson, Jr., D. J. Walker, M. A.
Sivilotti, “A Digital Neural Network Architecture
for VLSI”, IJCNN, San Diego 1990, pp. 545-550.

[3] Concurrent Logic Inc, 1290 Oakmead Parkway,
Sunnyvale, CA 94086, “CLi6000 Series Field-
Programmable Gate Arrays”, April 1992.

[4] Max van Daalen, Peter Jeavons, John Shawe-
Taylor and David Cohen, “Device for generat-
ing Binary sequences for Stochastic Computing”,

Electronics Letters, Vol 29, No 1, Jan 93, pp. 80-
81.

[5] J. Alspector, J. W. Gannett, S. Haber, M. B.
Parker, R. Chu, “A VLSI Efficient Technique for
Generating Multiple Uncorrelated Noise Sources
and its Application to Stochastic Neural Net-
works”, IEEE Transactions on circuits and sys-
tems, Vol. 38, No 1, Jan 1991, pp. 109-122.

[6] Peter Jeavons, David Cohen and John Shawe-
Taylor, “Generating Binary Sequences for
Stochastic Computing”, submitted to IEEE
Transactions on Information Theory.

[7] John Shawe-Taylor, Peter Jeavons and Max van
Daalen, “Probabilistic Bit Stream Neural Chip :
Theory”, Connection Science, Vol 3, No 3, 1991

[8] B. R. Gaines, “Stochastic Computing Systems”,
Advances in Information Systems Science, 2 1969,

[9] E. J. Watson, “Primitive polynomials (mod 2)”,
Math. Comp. Vol. 16, pp. 368-369, 1962.

[lo] B. W. Lindgren, Statistical Theory, Macmillan,
New York, 1976.

[I11 N. Zierler, “Primitive trinomials whose degree is
a Mersenne exponent”, Inform. Contr. Vol. 15,

[12] C. Peterson, J . R. Anderson, “A Mean Field The-
ory Learning Algorithm for Neural Networks” ,
Complex Systems, Vol 1, 1987, pp. 995-1019.

“Simulated Annealing and
Boltzmann Machines”, John Wiley and Sons,
1989.

[14] W. A. J . Waller, D. L. Bisset, P. M. Daniell, “An
Analogue Neuron Suitable for a Data Frame Ar-
chitecture” , Proceedings of International Work-
shop on VLSI for Artificial Intelligence and Neu-
ral Networks, Oxford, 1990.

pp. 317-328.

pp3 7-1 72.

pp. 67-69, 1969.

[13] E. Aarts, J . Korst,

211

